—— 研究助成報告 ——

電気生理学的手法による複合的高次脳機能 システムマッピング法の新規開発

下 竹 昭 寛

要旨:難治部分でんかん患者のでんかん焦点切除術において、術後の機能温存のために、臨床脳機能マッピングが行われるが、ネットワークシステムとして機能する高次脳機能に関わる大脳連合野、高次運動野の機能同定法は未だ確立されていない。本研究では、電気生理学的手法を複合的に用いた高次脳機能領野システムマッピング検査法の新規開発を目的として研究をすすめた。

機能マッピングの標準的な方法とされる高頻度(50 Hz)皮質電気刺激に単発(1 Hz)刺激による電気的白質線維追跡法(CCEP: Cortico-cortical evoked potential)を組み合わせた行為関連ネットワークマッピング(研究1)と、類義語判断課題下の高周波ガンマ活動による言語機能マッピングの手法を確立した(研究2)。これらの手法は、いまだ詳細が明らかにされていないヒト高次脳機能マッピング研究への応用が期待される。

てんかん治療研究振興財団 研究年報 2020;31:67-74

Key Words: 高次脳機能、脳機能マッピング、皮質電気刺激、皮質皮質間誘発電位、事象 関連電位

序論

言語、行為、認知、判断、意志決定、記憶などのヒトの高次脳機能は、運動野・各種感覚野・言語野などの複数の機能領域が階層性機能構築を示し、ネットワークを介して有機的に結合しシステムとして機能している。難治部分でんかん患者のてんかん焦点切除術において、術後のQOLを維持するために、臨床脳機能マッピングが行われるが、高次脳機能における機能同定法は未だ確立されていない。

術前評価に頭蓋内電極を留置した患者において、これまでは行われている脳機能マッピングの方法としては、機能特異的な課題下で事象関連電位測定、高頻度(50 Hz)皮質電気刺激があり、近年は領野間の機能的結合評価に電気的白質線維追跡(Cortico-cortical evoked potential:CCEP)が行われている。事象関連電位については、高次脳機能課題においては、加

算波形の解析のみならず, 時間周波数解析に よる高ガンマ帯域成分(High gamma activity: HGA. 通常80-150 Hzの広帯域の高ガンマ活 動)の同定が注目される。近年は言語マッピン グに硬膜下電極を用いた高ガンマ活動の計測が 応用されている1)。さらにデコーディング手法 を用い、脳活動と相関する機能構成要素を推定 することも行われている²⁾。硬膜下電極を用い た高頻度皮質電気刺激は、皮質機能マッピング の中核検査(gold standard)と位置づけられ る。大脳連合野の高次機能の探索には、陰性症 状, すなわち、電気刺激により誘発される、そ の領野が担う高次機能課題の障害を検討する。 例えば言語野のマッピングでは、文章音読、 物品呼称. 聴覚性理解などの言語課題を用い る。CCEP記録は単発(1 Hz)で皮質機能野の 刺激を行い. 隣接・遠隔領域のcortico-cortical propagationと判断される短潜時の誘発反応を 記録する3)。現在世界のてんかんセンターで.

てんかん焦点からの発作発射の伝播ネットワークや高次脳機能にかかわるネットワークの同定 に臨床応用されている。

本研究では、これら電気生理学的手法を複合的に用いた高次脳機能領野システムマッピング検査法の新規開発を試みた。本手法の確立は、てんかん焦点切除を含む脳機能外科において術後の患者の高次脳機能温存、QOL向上の臨床的意義が期待される。また、本研究は、いまだ詳細が明らかにされていない正常ヒト高次脳機能マッピング研究にも貢献しうると考える。本研究においては以下に挙げる2種類の高次脳機能、行為(Praxis)および意味認知(Semantic processing)に着目した。

脳卒中病変・神経機能画像の研究を中心に、「行為」遂行に下頭頂小葉 - 腹側運動前野間のネットワークの関与が提唱されている。機能マッピングの標準的な方法とされる高頻度(50 Hz)皮質電気刺激に、単発(1 Hz)刺激による電気的白質線維追跡法(CCEP)を組み合わせることで、高次脳機能野ネットワークをシステムとして機能同定が可能である。言語優位半球の前頭-頭頂ネットワーク内の行為関連脳領域の機能分化について、皮質電気刺激の手法を用いて同定した(研究1:皮質電気刺激を用いた行為関連ネットワークマッピング)。

高次脳機能マッピングには、機能に特異的な 適切な課題選択が重要である。課題下での事象 関連電位測定. 加算波形解析. 高周波ガンマ活 動解析による、より低侵襲な機能マッピング法 の開発を試みた。皮質事象関連電位・高ガンマ 活動解析は、機能的MRIに比べて高い時間・空 間分解能にすぐれ、脳機能マッピング法として はより特異度の高い手法であることが示唆され る。しかし、これらは脳機能に「関連する」脳 活動の計測であり、活動が記録された脳領域 が「必須」かどうかについては、介入検査であ る. 高頻度皮質電気刺激との比較検討が必要と なる。今回、言語機能マッピングのため、言語 機能と密接に関連する意味記認知機能に注目 し、機能特異的な課題として類義語判断課題を 用い, 言語機能マッピングとしての有用性を, 高ガンマ活動解析と皮質電気刺激の比較により

検討した(研究2:類義語判断課題を用いた高 周波律動記録による言語機能マッピングの有用 性)。

研究1:皮質電気刺激を用いた行為関連ネット ワークマッピング

【方法】

対象はてんかん外科術前評価のために言語優 位側の前頭葉・頭頂葉を含む領域に慢性硬膜下 電極を留置した難治部分でんかん患者5例。全 例において患者同意のもとで検査をおこなっ た(京大医の倫理委員会承認 #C533). 高頻度 皮質電気刺激による通常の臨床的皮質機能マッ ピングを前頭葉・頭頂葉電極にて行った。頭頂 葉電極では、陽性症状がないことを確認したの ちに、単純運動(舌の左右への交代運動・両手 指タップ運動), 言語課題を行い, 追加の課題 として、行為関連の課題を行った。内容は、道 具使用パントマイム, 実際の道具使用, 到達運 動、掌握運動、手のジェスチャー模倣の課題を 行い、さらに計算課題も行った。道具使用パン トマイム課題においては、患者に道具名を提示 し、その道具を使う動作を模倣してもらい、課 題遂行の可否を判断した。高頻度皮質電気刺激 のパラメータは、刺激周波数50 Hz. パルス幅 0.3 ms, 極性交互で、隣り合う2電極を刺激強度 10~15mA. 刺激時間4~5秒で. 皮質脳波をモ ニターし後発射がないことを確認しながら刺 激を行った (脳波計 EEG-1100. 刺激装置 SEN-7203 および MS-120B, 日本光電)

頭頂葉からの刺激による領域間の機能連結を皮質-皮質間誘発電位(CCEP)により検討した(京大医の倫理委員会承認 #433)。刺激パラメータは、周波数1 Hz、パルス幅0.3 ms、極性交互、刺激強度は8~12 mA、で隣り合う2電極を刺激した。刺激開始を0秒として波形を加算し、前・後半30施行ずつにわけて再現性を確認した。頭頂葉電極からの刺激によるCCEPを、外側前頭葉電極(10-16電極/患者)から記録した。さらに外側および底部側頭葉電極(22~55電極/患者)でもCCEPを記録した。

各患者の各電極位置情報は、電極留置下の MRI T1 MPRAGE画像上にて同定し、FSL

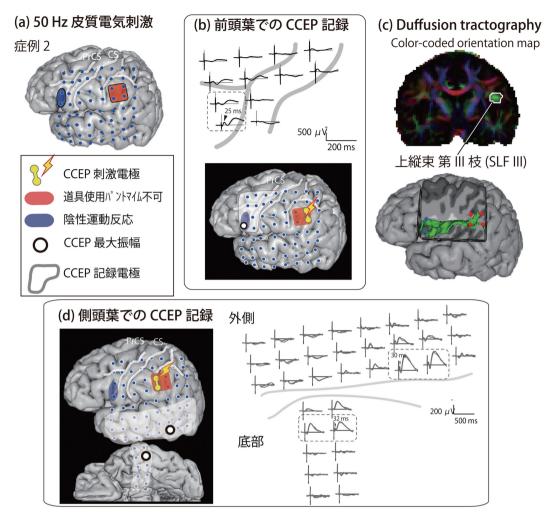
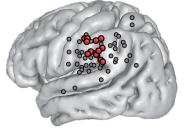
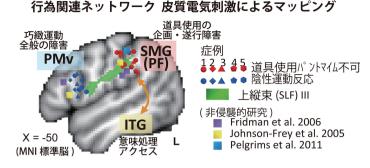


Fig. 1


software の 非 線 形 変 換(FNIRT, www. fmrib.ox.ac.uk/fsl/fnirt/)を用いて、術前T1 MPRAGEおよびMNI(Montreal Neurological Institute)標準脳画像上の座標として示し、解剖学的位置をJülich histological atlasにて同定した。

刺激・反応部位から術前MRIのdiffusion tractographyを用いて、同定された前頭-頭頂の解剖的線維結合を推定した⁴。

【結果】


全5例において,左下頭頂小葉(縁上回)と 左腹側運動前野(下前頭回弁蓋部)の高頻度皮 質電気刺激により失行様症状が出現した.中心後回および下頭頂小葉の計54電極において行為関連の課題を行い、縁上回の前方の12電極(22%)において、刺激中に道具使用のパントマイムが不能となった(Fig. 1a, Fig. 2)。道具呼称を含めた言語課題、実際の道具使用、到達運動、掌握運動、手のジェスチャー模倣の課題遂行は可能であった。一方、腹側運動前野の刺激では右側優位の両指タップ停止、または舌の左右への交代運動の停止、すなわち陰性運動反応(Negative motor response)がみられた。道具使用パントマイムが不能となった12電極のMNI標準脳座標は、Jülich cytoarchitectonic

皮質電気刺激:道具使用パントマイム (MNI 標準脳座標)

- 道具使用パントマイム不可
- 刺激中の障害なし

Fig. 2 Fig. 3

atlas上では、11電極はPF野、1電極はPFt野であった(Fig. 2)。

下頭頂小葉の刺激により、前頭葉からCCEP が記録された。道具使用パントマイムが不能と なった縁上回前方の電極刺激では、腹側運動前 野の電極において遠隔の最大反応が認めた。こ の電極は高頻度皮質電気刺激にて陰性運動反応 を認めた電極であった。下頭頂小葉のより吻側 の電極の刺激では、中心前回の顔面の運動野上 の電極にてCCEPの最大反応を認め、よい尾側 の電極刺激では、下前頭回の三角部に最大の反 応を認めた⁵⁾。これらの結果から、道具使用の パントマイムの障害を認めた縁上回前方領域の 電極と陰性運動反応を認めた腹側運動前野の二 領域間において部位特異的な機能的結合を認め た (5例中4例) (Fig. 1b)。CCEPにて結合を認 めた頭頂葉、前頭葉の電極位置情報をROIとし て解剖学的線維を確率論的トラクトグラフィー にて解析し、両電極間は上縦束第III枝 (superior longitudinal fasciculus III (SLF III)) で結 合していると考えられた(Fig. 1c)。

5例中4例において, 道具使用パントマイムが 不能となった縁上回前方電極の刺激により, 側 頭葉外側・底部からCCEPが記録された。下側 頭回の底部に最大反応を認め, 3例においては, 同部位は皮質電気刺激により言語・意味処理機 能が同定された (Fig. 1d)。

【考察】

下頭頂小葉と腹側運動前野間の行為関連ネッ トワークの部位特異的機能結合を単発・高頻度 皮質刺激の組み合わせにより明らかにした. CCEPにより部位特異的な結合を示した腹側運 動前野および縁上回前方領域の機能について. 腹側運動前野 (PMv) の高頻度皮質電気刺激で は、陰性運動反応がみられ、これは代償機転の きかない状態での一過性の無動様失行症状と 解釈された^{6,7)}。また、縁上回前方領域(PF野) の高頻度刺激では、道具使用パントマイムのみ 不能となり、古典的な観念運動失行と同等の症 状を認め、行為遂行のネットワークにおける両 者の機能分化が示された。下頭頂小葉は、道 具の操作に関する知識 (Manipulation knowledge) の貯蔵の機能や行為に関連した身体空間 位置処理に関連することが報告されている^{8,9)}。 MNI標準脳上では、主にPF野であり、道具使 用に関連する過去の機能的MRI研究で報告され る賦活部位と概ね合致した(Fig. 3) 10)。

道具使用パントマイムが不可となった縁上回の電極刺激による側頭葉からのCCEP記録では、下側頭回の底面との機能結合が示された。近年の脳卒中病変による研究では、中・下側頭回が行為システムの意味記憶に関連することも示されている¹¹⁾。本研究における側頭葉のCCEPの結果は、行為における意味機能へのアクセスが示唆された。

研究2: 類義語判断課題を用いた高周波律動記 録による言語機能マッピングの有用性

【方法】

意味認知機能課題である「類義語判断課題| を用いて^{12,13)}. 皮質脳波の高周波律動記録によ る言語機能マッピングの有用性を検討する。対 象は、術前評価のため言語優位半球に慢性硬膜 下電極を、前頭葉・側頭葉外側および底部に留 置した難治部分でんかん患者5名. 臨床脳機能 マッピングとして、言語課題6種(呼称課題、 音読課題、口頭指示、意味と単語のマッチング 課題、漢字単語読み、かな単語読み)を高頻度 皮質電気刺激中に施行し、言語野の同定を行っ た。患者の同意のもと、類義語判断課題の皮質 脳波を記録した。比較対照として数量判断課 題も行った(Fig. 4 a)(京大医の倫理委員会承 認 #C533)。類義語判断課題では、上に示され た振り仮名付きの漢字2字の単語に意味が一番 近いものを下段3つの候補から選び、数量判断 課題(対照課題)では上の数字に一番近い数字 を下段の3つの候補選び、回答は右手で3択の ボタン押しで回答した。各課題は5秒ごとに問 題提示し、1セッション51試行、各々の課題を 3セッションずつ施行した。脳波記録記録条件 は以下の通りである。 基準電極: 帽状腱膜下 電極. サンプリング周波数:2000 Hz (症例1~ 3) 1000 Hz (症例4, 5), 時定数10秒。記録し た皮質脳波は、 短時間フーリエ変換を用いた時 間周波数解析を行った。類義語判断課題に特異 的に高ガンマ帯域律動(80-160 Hz)を認めた 電極を同定し、高頻度皮質電気刺激で同定され た言語電極の分布を、解剖学的部位毎に(前頭 葉, 外側側頭葉・頭頂葉, 側頭葉底面) 比較し た。

【結果】

5例において、皮質電気刺激では平均32.4電極(16-45電極/患者)の言語機能を同定した。数量判断と較べて類義語判断課題に特異的に高ガンマ律動が、99電極(平均19.8電極、(10-33電極)/患者)で認め、そのうち64電極が皮質電気刺激での言語機能電極であった(言語電極

数/高ガンマ律動陽性の電極数:前頭葉14/26, 外側側頭葉22/40電極,側頭葉底面28/33電極) (Fig. 4b)。

【考察】

類義語判断課題下の高ガンマ律動による言語 マッピングと皮質電気刺激による臨床マッピン グの言語機能の比較からは、側頭葉底部領域の 言語機能同定には特異度が高く有用であった。 本課題は各言語領域の大まかな分布の把握には 有用であったが、従来の皮質電気刺激による マッピング結果と必ずしも合致していない。皮 質脳波によるマッピングは、 課題に関連する機 能部位からの脳活動を広く捉えることから、一 過性に局所の脳活動を変容させる皮質電気刺激 とはマッピング手法が異なる可能性がある。側 頭葉底部以外において、言語の中核機能を詳細 に同定するには、言語機能に関連する他の課題 を用いた皮質事象関連電位、高周波数帯域解析 を組み合わせることや、多変量パターン解析 (デコーディング) による追加解析が必要と考 えられた。

【結語】

てんかん外科における硬膜下電極を用いた電気生理学的手法を複合的に用いた高次脳機能領野システムマッピングを行った。研究1では、行為関連ネットワークの機能結合および機能分化につき、単発(1 Hz)・高頻度(50 Hz)皮質刺激の組み合わせにより明らかにした。研究2では、類義語判断課題下での高ガンマ帯域解析による言語機能マッピングの有用性を主に側頭葉において明らかにした。

これらの術前脳機能マッピングは、臨床的に 有用な手法であると同時に、患者の同意・協力 のもと得られた貴重なヒト高次脳機能・脳機能 ネットワークの知見は、機能外科の術中脳機能 モニタリングへ応用され、またシステム神経科 学の知見としてフィードバックされる。今後の 発展として、課題の選択と解析手法の組み合わ せの検討を行い、いまだ詳細が明らかにされて いないヒト高次脳機能マッピング研究への応用 が期待される。

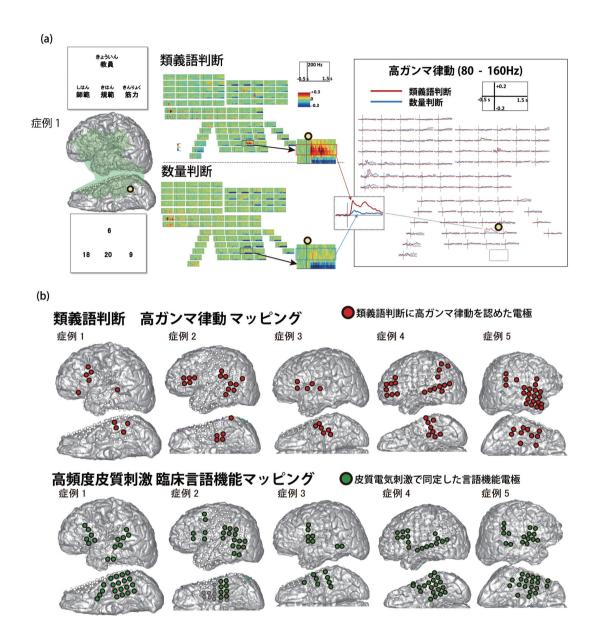


Fig. 4 (a) 類義語判断・数量判断の高周波律動解析結果(症例1). 80-160 Hzの帯域の活動を取り出して 二課題間で比較している(右). (b)類義語判断課題に特異的に高ガンマ律動を認めた電極(赤丸)と高頻度皮質電気刺激による言語機能マッピング結果(言語機能電極が緑丸)の比較

文献

- Crone NE, Hao L, Hart J, et al. Electrocorticographic gamma activity during word production in spoken and sign language. Neurology, 2001; 57: 2045-53.3.
- 2) Chen Y. Shimotake A. Matsumoto R. Kunieda T.

Kikuchi T, Miyamoto S, Fukuyama H, Takahashi R, Ikeda A, Lambon-Ralph MA. The 'when' and 'where' of semantic coding in the anterior temporal lobe:temporal representational similarity analysis of electrocorticogram data. Cortex. 2016. 79: 1-13

- 3) Matsumoto R, Kunieda T, Nair D. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 44: 27-36 2017
- 4) Yamao Y, Matsumoto R, Kunieda T, et al. Intraoperative dorsal language network mapping by using single-pulse electrical stimulation. Human brain mapping 2014; 35: 4345-4361.
- 5) Matsumoto R, Nair DR, Ikeda A, et al. Parietofrontal network in humans studied by corticocortical evoked potential. Human brain mapping 2012: 33: 2856-2872.
- 6) Filevich, E., S. Kuhn and P. Haggard (2012). "Negative motor phenomena in cortical stimulation: implications for inhibitory control of human action." Cortex; a journal devoted to the study of the nervous system and behavior.
- Ikeda, A., K. Hirasawa, M. Kinoshita, T. Hitomi, R. Matsumoto, T. Mitsueda, J. Y. Taki, M. Inouch, N. Mikuni, T. Hori, H. Fukuyama, N. Hashimoto, H. Shibasaki and R. Takahashi (2009) . "Negative motor seizure arising from the negative motor area: is it ictal apraxia?" Epilepsia 50 (9): 2072-2084.

- 8) Buxbaum, L. J. (2001). "Ideomotor apraxia: a call to action." Neurocase 7 (6): 445-458.
- 9) Goldenberg, G. "Apraxia and the parietal lobes." Neuropsychologia 47 (6): 1449-1459, 2009
- Johnson-Frey, S. H., et al. "A distributed left hemisphere network active during planning of everyday tool use skills." Cerebral cortex 15(6): 681-695, 2005
- Buxbaum, L.J., Shapiro, A.D., and Coslett, H.B. Critical brain regions for tool-related and imitative actions: a componential analysis. Brain, 137 (7), 1971-1985, 2014
- 12) Pobric G, Jefferies E, Lambon Ralph MA. 2007. Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants. Proc Natl Acad Sci. 104: 20137-2014
- 13) Binney RJ, Embleton KV, Jefferies E, Parker GJM, Lambon Ralph MA. 2010. The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortioncorrected fMRI, rTMS, and semantic dementia. Cereb Cortex. 20: 2728-2738.