—— 研究助成報告 ——

迷走神経誘発電位測定法の開発

Recording of vagus nerve evoked potentials in vagus nerve stimulation therapy

- Method and clinical application -

字佐美 憲 -1. 川 合 謙 Λ^{2} . 園 生 雅 弘³. 斉 藤 延 Λ^{1}

要旨:迷走神経刺激療法は難治性てんかんに対する治療法である。過去の研究から迷走神経 刺激療法の作用機序として,頸部迷走神経への刺激によって求心性の神経伝導が発生し,最 終的に大脳皮質においててんかんを抑制すると考えられているが,迷走神経刺激による求心 性神経伝導を直接証明した報告はない。本研究では全身麻酔下にて行う迷走神経刺激装置植 込手術時に迷走神経刺激による誘発電位測定を行った。得られた誘発電位波形には,頭蓋底 進入部付近を起源とすると考えられる早期ピークと,咽頭喉頭周囲筋電図由来と考えられる 後期ピークが出現した。誘発電位は迷走神経固有のものであった。刺激部位を脳に近づける ことでピーク潜時が短縮することから,誘発電位は求心性伝導によって生じたものであると 考えられた。神経伝導速度は約27m/秒と算出された。本研究は臨床における迷走神経刺激 による求心性神経伝導を初めて証明した。

てんかん治療研究振興財団 研究年報 2015;26:105-114

Key Words: vagus nerve stimulation, evoked potential, epilepsy surgery, afferent nerve conduction, nerve conductive velocity

【序論】

迷走神経刺激療法は難治性てんかんに対する 治療法である。体内植込型の電源内蔵刺激装置 から発生する電気刺激によって左頸部迷走神経 を慢性的・間歇的に刺激することでてんかん発 作を緩和させる。迷走神経刺激療法のてんかん 抑制効果は無作為化比較試験にて有効性が確立 されており^{1,2)},今日ではてんかん治療におけ る重要な選択肢の一つとなっている³⁾。迷走神 経刺激療法のてんかん抑制に関する作用機序に ついては、過去の研究報告から少しずつ解明が 進んできているものの、依然として全容は解明されていない。てんかんは大脳皮質ニューロンの異常に由来するが、迷走神経刺激がてんかんを抑制している事実からすると、刺激部位である頸部から求心性に伝導が起こっているはずである。しかしながら、現在のところ迷走神経刺激による求心性神経伝導を直接証明した研究はない。末梢神経の刺激伝導を捉える方法としては、誘発電位測定がある。過去の研究報告には迷走神経刺激による誘発電位を測定したものがあるが、いずれの報告においても刺激から10msec以降の遅い潜時にしか着目しておらず。

¹⁾ 東京大学大学院医学系研究科 脳神経外科学

^{〔〒113-8655} 東京都文京区本郷7-3-1〕

²⁾ NTT東日本関東病院 脳神経外科

³⁾ 帝京大学医学部附属病院 神経内科

Kenichi Usami¹⁾, Kensuke Kawai²⁾, Masahiro Sonoo³⁾, Nobuihto Saito¹⁾

¹⁾ Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo

⁽⁷⁻³⁻¹ Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan)

²⁾ Department of Neurosurgery, NTT Medical Center Tokyo, Japan

³⁾ Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan

出現した誘発電位のピークは遠心性伝導の結果生じる咽頭喉頭筋電図由来であると結論づけられている⁴。求心性伝導を捉えたものである体性感覚誘発電位や聴性脳幹反応における誘発電位の潜時を考慮すると、迷走神経刺激による求心性神経伝導による誘発電位は、刺激から数msec程度の早期に検出されるはずである。本研究では、迷走神経刺激にて生じた求心性神経伝導による誘発電位を捉えるための測定方法を確立し、迷走神経刺激の電気生理学的性質を考察するとともに、誘発電位測定の臨床的有用性について検討した。

【方法】

対象患者

本研究の対象は、全身麻酔下に迷走神経刺激 装置(米国Cyberonics社製)植込術を行った 25人の難治性てんかん患者である(男性15,女 性10,年齢3-47歳,中央値18歳)。

測定手順

迷走神経誘発電位の測定は全身麻酔下にて行 われる迷走神経刺激装置植込手術時に行われ た。全身麻酔導入薬は患者ごとに異なり、チオ ペンタールナトリウム、プロポフォール、亜酸 化窒素、臭化ベクロニウム、臭化ロクロニウム などを用いた。麻酔維持薬は全例でセボフルラ ンが用いられた。すべての患者において麻酔導 入から誘発電位測定開始までの時間は約60-90 分であった。全身麻酔導入後、国際10-20法に 基づき、A1、A2、C3、C4、CzそしてT5に針 電極を留置した。それらに加え、 左乳様突起上 にAlaを、AlaとT5の中点にAlbを留置した。 迷走神経刺激による刺激アーチファクトの除去 目的に、 顎から後頸部にかけて全周性にゼラチ ン製のテープ状アース電極を巻きつけた。電極 留置後は通常通り植込手術を行った。左前頸部 創ではらせん電極を迷走神経に巻きつけ、パル スジェネレータと接続した。頸部創の皮下組織 に加算トリガーのための針電極を2本留置した。 記録はシグナルプロセッサ(Neuropack MEB-2200:日本光電社)を使用した。サンプリング 周波数は30,000Hz, フィルタは50-3000Hz, 50Hzのノッチフィルターを使用し、1回の記録 あたりの加算回数は1000回とした。テスト刺激を行い、電極リードのインピーダンスチェック及び有害事象が起こらないことを確認し、誘発電位測定を開始した。

目的に応じて以下のような測定条件を用いた。

i) 刺激条件による影響の検討

刺激条件が誘発電位の波形に及ぼす影響を検討するため、刺激条件を変更させて測定を行った。刺激設定は、周波数については30Hzで一定とし、電流値は0.25-2.0mA、刺激パルス幅は130-750usecの範囲で変更した。

ii) 誘発電位の発生源の検討

一部の患者において、異なる記録モンタージュによる測定 (A1-Cz, A2-Cz, C3-Cz, C4-Cz, T5-Cz, A1a-Cz, A1b-Cz), 筋弛緩薬を投与しその前後での測定 (n=13), 電極付き気管内チューブによる咽頭喉頭筋周囲の筋電図測定 (n=5) を行った。

iii)迷走神経に特異的な誘発電位であるかどう かの検討

術野に現れた頸神経ワナに刺激電極を巻き付け,迷走神経の場合と同様に刺激および記録を行った(n=5)。

iv)求心性神経伝導によって発生した誘発電位 かどうかの検討

らせん電極を吻尾側方向に移動させ、それぞれの位置で測定を行った(n=14)。

v) 迷走神経の電気生理学的性質の検討

刺激電極の移動距離と、潜時の変化から神経 伝導速度 (NCV) を算出した。NCVは下記の 式で表される。

 $NCV(m/s) = \Delta/(Lc-Lr)$

Δは物側と尾側のらせん電極間の距離、Lc は尾側にて刺激した際に出現した誘発電位のN1ピークの潜時であり、Lrは同様に吻側におけるN1ピークの潜時である。

e. 測定後

すべての測定が終了後,適切な位置にらせん 電極を戻し,左前胸部の大胸筋膜上に予め形成 しておいた皮下ポケットにパルスジェネレータ を埋設して閉創し手術終了とした。それぞれの 患者における測定時間は全患者において1時間 未満であった。本研究において,測定に伴う有 害事象は発生しなかった。

【結果】

迷走神経誘発電位の波形 (Fig. 1)

最初に出現する刺激アーチファクトに引き続いて、典型的には4つのピークの出現がみられた。我々はそれらのピークを5msec以前に現れる早期ピークと、5msec以降に現れる後期ピークに分別し、早期に出現する小さな陽性ピークをP1、小さな陰性ピークをN1とし、後期に出現する大きな陽性ピークをP2、大きな陰性ピークをN2とそれぞれ名づけた。P1-N1複合は、

2人を除く23人で認められた。目視によるN1ピークの決定が可能であった23人のN1ピーク の潜時は 3.3 ± 0.4 msec(範囲:2.5-4.2 msec)であった。P2-N2複合は,6.4-11.1 msecに出現する大きな陽性ピーク(P2)と,それに引き続いて9.2-15.1 msecに出現する大きな陰性ピーク(N2)から構成されていた。

これらの波形は、それぞれの患者において、 また患者間においても高い再現性をもって得ら れた。

i) 刺激設定毎の波形の変化 (Fig. 1) 最小の刺激設定である0.25mA, 130usecでは

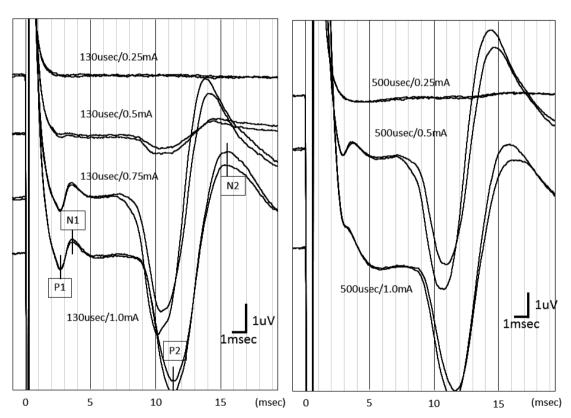


Fig. 1 Representative waveforms evoked by various parameters of vagus nerve stimulation. The evoked potentials during 20 msec, beginning 1 msec before each pulse of the VNS, were recorded from scalp electrodes A1-Cz with 50-Hz high-pass, 3,000-Hz low-pass, and 50-Hz notch filters, and were averaged for 1,000 stimuli. Two representative traces of A1-Cz from a patient are presented. A current of 0.25 mA did not evoke any discernible potential, irrespective of pulse width. As the current and pulse width were increased, small biphasic peaks around 3 msec (P1, N1) immediately following a large stimulation artifact, and large biphasic peaks (P2, N2) around 10 msec, appeared. Further increase in the current and pulse width resulted in an increase of N1 amplitude, but the P1-N1 complex evoked by 500 μsec and 1.0 mA was buried in the downslope of the initial stimulation wave and could be recognized only as a tiny notch and a shoulder.

早期、後期ともにピークを認める患者はいなかったが、刺激アーチファクト波形に関しては全患者にて再現性をもって認められた。電流値を大きくするにしたがって、PI-NI複合の振幅は大きくなる傾向がみられたが、潜時には影響を及ぼさなかった。また、刺激アーチファクト波形後半の下降曲線も同様に時間幅が延長した。

各患者におけるP2及びN2の振幅と刺激設定の関係 (n=7) では、パルス幅の増加はP2及びN2の振幅には有意に影響を与えないが、電流値の増加は振幅に影響を与えており、正の相関が示唆された (Fig. 2)。

ii-a) 電極モンタージュによる波形の変化 (Fig. 3) ピークが最も際立っていたモンタージュは A1-CzとA1a-Czであった。それぞれのピークの大きさは、A1a、A1b、T5と探査電極が頭蓋

底から遠ざかるにしたがって徐々に小さくなった。A2-Czでは、最初の刺激アーチファクト波形とP2-N2の極性は反転し、完全に対称なピークがみられたが、早期ピークに関しては反転しなかった。C3-CzとC4-Czでは、P2-N2複合は、A1-Cz、A2-Czでのものと同潜時であるが小さな振幅となっていた。P1-N1複合はC3-CzとC4-Czではみられなかった。

ii-b) 気管内チューブ電極の記録と筋弛緩薬の 効果 (Fig. 4)

頭皮電極と同時に記録した気管チューブ電極では、左側の気管チューブ先端電極にて、A1-Czでみられる後期ピーク群より約1msec早く、極性が同じで、数倍の振幅をもつ波形がみられたが、早期ピーク群はみられなかった。筋弛緩薬投与後、P1-N1複合は残存したが、

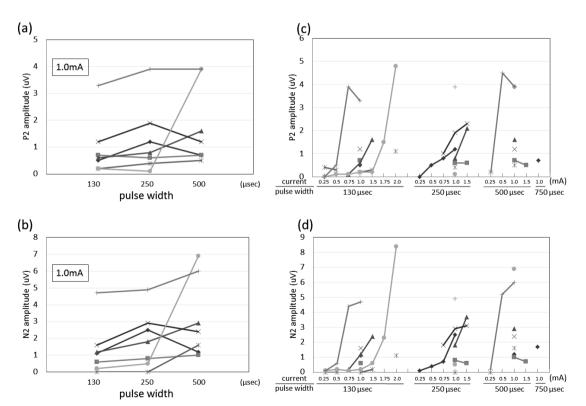


Fig. 2 Association between the P2 and N2 amplitudes and the VNS parameters in each patient (n=7). Each line represents a patient. (a) and (b) demonstrate the amplitudes of P2 and N2, respectively, when stimulated with three pulse widths at a fixed current of 1.0 mA. The pulse width did not seem to significantly affect the amplitudes of P2 and N2 in all patients except one. (c) and (d) demonstrate the amplitudes of P2 and N2, respectively, when stimulated with various currents. The current seemed to affect the amplitudes in a sigmoid fashion.

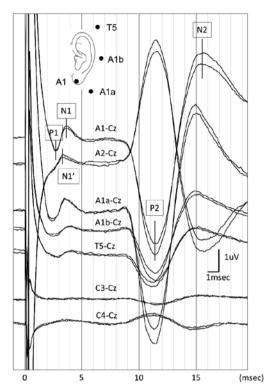


Fig. 3 Vagus nerve evoked potentials recorded in different montages. Two traces from a single patient without muscle relaxation. The parameters of VNS were a current of 1.0 mA, a pulse width of 130 usec, and a frequency of 30 Hz. The early negative peak (N1) was most prominent in montages A1-Cz and A1a-Cz. It gradually decreased its amplitude as the exploring electrodes separated away from the skullbase from A1a to A1b to T5. A smaller negative peak (N1') was noted in A2-Cz slightly earlier than the N1 observed in A1-Cz. Large peaks (P2, N2) of the late component showed a phase reversal between the sides of exploring electrodes.

P2-N2複合は完全に消失した。筋弛緩薬投与後の早期ピーク群の残存と後期ピーク群の消失は,筋弛緩前後で測定を行ったすべての患者でみられた。気管チューブ筋電図のピークも筋弛緩によって完全に消失した。

iii) 頸神経ワナの刺激

頸神経ワナの刺激では、迷走神経を刺激した 時のような誘発電位ピークは早期・後期ともに

全く出現しなかった(Fig. 5)。

iv) 刺激部位の移動による影響 (Fig. 6)

電極の移動距離は9.5±2.5 mmであった。尾側から吻側へらせん電極を移動させると、11人の患者ではP1-N1複合の潜時が短縮した。残りの3人は、目視ではP1-N1複合の潜時短縮はみられなかった。

v) 神経伝導速度

吻尾側の両方において目視でピーク潜時が確認できた9人における神経伝導速度は 27.4 ± 10.2 m/sであった (Tab. 1)。

【考察】

Hammondらは、臨床における迷走神経刺激において誘発電位が記録されることを報告している⁴。彼らの報告によると、得られた誘発電位は筋弛緩で消失することから、それらは咽頭喉頭周囲の筋電図であったと結論づけられている。我々は彼らが捉えたものと同様の後期ピークを捉え、同様に筋弛緩にて消失した。それに加えて今回、我々は筋弛緩にて消失しない早期出現のピークを捉えた。迷走神経の極めて近くをする頸神経ワナの刺激では誘発電位が生じなかったことから、これらは迷走神経に特有の誘発電位であると考えられた。刺激部位を尾側から吻側に移動させると早期ピークN1の潜時が短縮したことは、N1は迷走神経刺激によって生じた求心性神経伝導によるものと考えられた。

早期ピーク (P1, N1) は、耳介 (A1-Cz) と 乳様突起付近 (A1a-Cz) で最も大きな波形となり、探査電極が頭側になる (A1a→A1b→T5) に従い小さくなった。このことから、早期ピークの起源は脳幹部、頭蓋底部、あるいは上位の頸部付近であると考えられる。誘発電位が発生する要因は、1) 神経幹の周囲の容積導体の大きさの変化、2) 神経幹の周囲の容積導体のインピーダンスの変化、3) 神経幹の走行方向の変化、4) 軸索の伝導開始部または終末部、の4つがある⁵⁾。上記の接合部電位の発生要因を迷走神経の伝導経路にて考慮すると、早期ピークの起源は迷走神経周囲のインピーダンスが変化する場所であり、頭蓋骨進入部である頸静脈孔の可能性がもっとも考えられた。一

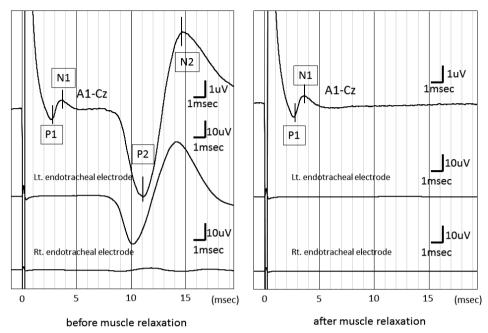


Fig. 4 Vagus nerve evoked potential, endotracheal electromyogram (EMG), and effect of muscle relaxation. The endotracheal EMG was recorded dominantly from the left side. Its waveform was a much larger and slightly earlier similarity of the late components in A1-Cz. Note the scale is different between the top trace and the lower two traces. After administration of a muscle relaxant, the endotracheal EMG and the late component in A1-Cz disappeared, while the early component was unchanged. Representative traces from a patient are presented.

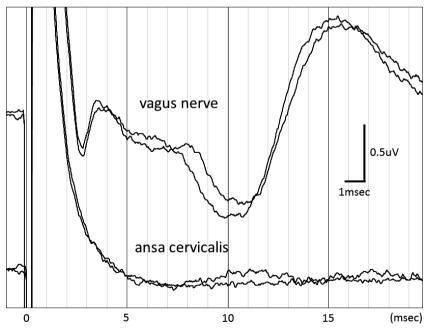
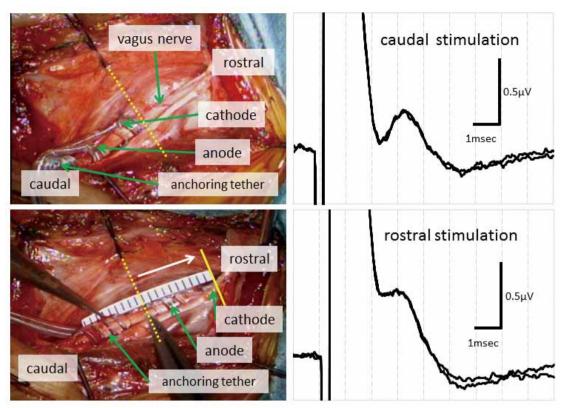



Fig. 5 No potential was evoked when the ansa cervicalis was stimulated. Representative traces are presented from a single patient. Stimulation parameters were a current of 1.0~mA, a frequency of 30~Hz, and a pulse width of $130~\text{\mu sec}$.

Fig. 6 Effect of stimulation position. Evoked potentials were recorded while changing the rostrocaudal position of the helical stimulation electrode along the vagus nerve. In this patient, the rostral end of the cathode was moved from the yellow dotted line to the yellow solid line. The movement was 11 mm.

Tab. 1 Distance of electrode movement, latency of N1, and estimated value of nerve conduction velocity.

Patient	(mm)	Lc	Lr	Lr-Lc (msec)	NCV (m/s)
#		(msec)	(msec)		
8	12	3.1	3.5	-0.3	N/A
9	12	3.7	3.1	0.6	19.4
10	8	3.6	3.3	0.3	25.8
11	6	3.2	3.6	-0.3	N/A
12	5	3.0	2.3	0.7	6.8
14	11	3.0	2.7	0.3	32.4
16	10	4.0	3.8	0.2	41.7
17	7.5	3.6	3.4	0.2	37.5
18	9	2.9	2.6	0.3	30.0
19	14	2.7	2.2	0.5	28.0
22	10	3.0	2.6	0.4	25.0
23	12	3.1	V/U		N/A
24	8	2.9	3.2	-0.3	N/A
25	9	3.7	V/U		N/A
Mean	9.5	3.3	3.0	0.4	27.4
SD	2.5	0.4	0.5	0.2	10.2

 $\Delta,$ distance (mm) of transition from the caudal stimulating point to the rostral stimulating point. Lc (msec), latency of N1 measured with caudal stimulation. Lr (msec), latency of N1 measured with rostral stimulation. NCV (m/s), nerve conduction velocity, calculated as $\Delta/(\text{Lc-Lr})$. V/U, visually undetermined. SD, standard deviation.

方、神経終末である延髄の神経核における接合部電位については、迷走神経の場合はいくつもの核に投射してしまうことで接合部電位の向きが分散してしまい、目に見える誘発電位としては捉えられなかったと思われる。後期ピークの起源に関して、前述の通りP2及びN2は先行研究で記録された誘発電位と同様のものであると思われる。筋弛緩によって消失すること、気管チューブ電極にて同様の波形が捉えられたことから、P2及びN2は咽頭喉頭周囲の筋電図である可能性が高い。

頸部迷走神経は80%が求心性線維であり⁶⁾, A β 線維, A γ 線維, C線維の3つの成分から構成されている⁷⁾。神経伝導速度はA β 線維が最も速く, C線維が最も遅い。活動電位を生じる域値はA β 線維が最も低く, C線維が最も高い。過去の報告ではA線維の神経伝導がてんかん抑制に寄与していることを示唆している。我々の

結果では、刺激部位の移動によって生じた誘発電位ピークの移動から求めた迷走神経の推定伝導速度は27.4±10.2 m/sとA線維の範疇であり、 先行研究の所見に矛盾しない。

本研究は、ヒトにおいて実際の臨床で使用す る迷走神経刺激の求心性神経伝導を初めて証明 し、迷走神経の電気生理学的な性質を示した。 これらの所見は臨床的有用性を直接示したわけ ではないが、今後、本研究が臨床的に有用とな る可能性としては以下の2つが考えられる。一 つ目は、手術中における迷走神経の同定であ る。多くの場合、頸神経ワナは迷走神経よりも 細いため目視にて鑑別が容易であるが、まれに 頸神経ワナが太い症例が存在する。迷走神経刺 激装置植込術の術野は3cm程度と非常に狭い。 本測定法を用いることで迷走神経を同定するこ とが可能であり、またその時点で求心性伝導を 確認することができる。二つ目は、迷走神経刺 激療法の有効性や無効な場合を予測するのに利 用できる可能性である。誘発電位の出現パター ンの変化とてんかん抑制を経時的に調べること で誘発電位が治療効果予測因子になり得る可能 性がある。

本測定法にて得られた求心性伝導を示す誘発電位は頭蓋骨進入部付近の誘発電位であると考えられ、刺激部位から頭蓋骨進入部までの求心性伝導に関しては評価が可能であったが、それ以上中枢側の誘発電位は検出されなかった。迷走神経刺激は延髄弧束核から脳内の様々な部位へ伝導し⁸⁾、最終的に大脳皮質を修飾しててんかんを抑制すると考えられるが、無効ないし効果不十分な患者における原因を検討する方法として、投射経路のどの部位に伝導がされていないのか、あるいは伝導しているにもかかわらず効果はないのか、ということを本測定で評価するのは困難であると思われた。

【結論】

実際の臨床で使用する迷走神経刺激において, 求心性神経伝導による誘発電位を記録した。ヒトにおいて迷走神経刺激による求心性伝導を即時的に捉えた報告は過去にはなく, 我々の研究が初めてであると思われる。迷走神経誘

発電位測定は、脳神経外科手術にて日常的に使用する簡便な誘発電位測定の手技を用いることで測定が可能であった。測定結果から推定された神経伝導速度から、迷走神経刺激により生じる求心性神経伝導を担うのはA線維であることが示唆された。本測定法は、迷走神経刺激装置植込術中における迷走神経の確実な同定や、治療効果予測に利用できる可能性が考えられた。

【引用文献】

- The. Vagus. Nerve. Stimulation. Study. Group.
 A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology. 1995: 45(2): 224-30.
- Handforth A, DeGiorgio CM, Schachter SC, Uthman BM, Naritoku DK, Tecoma ES, et al.: Vagus nerve stimulation therapy for partialonset seizures: a randomized active-control trial. Neurology. 1998; 51(1): 48-55.
- 3) Fisher RS, Handforth A. Reassessment: vagus nerve stimulation for epilepsy: a report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 1999: 53(4): 666-9.
- 4) Hammond EJ, Uthman BM, Reid SA, Wilder BJ. Electrophysiologic studies of cervical vagus nerve stimulation in humans: II. Evoked potentials. Epilepsia. 1992; 33(6): 1021-8.
- 5) Sonoo M. How much has been solved regarding SEP generators? Electroencephalogr Clin Neurophysiol Suppl. 1999; 49: 47-51.
- 6) Foley JO, DuBois FS. Quantitative studies of the vagus nerve in the cat. I. The ratio of sensory to motor fibers. The Journal of Comparative Neurology. 1937: 67(1): 49-67.
- Evans MS, Verma-Ahuja S, Naritoku DK, Espinosa JA. Intraoperative human vagus nerve compound action potentials. Acta Neurologica Scandinavica. 2004; 110(4): 232-8.
- Henry TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology. 2002: 59(6 Suppl 4): S3-14.

Summary

Recording of vagus nerve evoked potentials in vagus nerve stimulation therapy - Method and clinical application -

Kenichi Usami, Kensuke Kawai, Masahiro Sonoo, Nobuihto Saito

Background: There has been no direct marker to verify the afferent propagation of nerve impulses in vagus nerve stimulation (VNS) Therapy. We established a method for recording the vagus nerve evoked potential (VN-EP). We analyzed the short-latency components of the VN-EP and discuss the significance of measuring VN-EP in VNS Therapy. Methods: EPs within 20 ms were prospectively recorded simultaneously from the scalp during implantation surgery in 25 patients with drug-resistant epilepsy. A recording was made before and after a muscle relaxant was administered, when changing the rostrocaudal position of stimulation, or when stimulating the ansa cervicalis instead of the VN. Results: The short-latency components consisted of four peaks. The early component around 3 ms, which was most prominent in A1-Cz, remained unchanged after muscle relaxation while the later peaks disappeared. Rostral transition of the stimulation resulted in an earlier shift of the early component. The estimated conduction velocity was 27.4 ± 10.2 m/s. Stimulation of the ansa cervicalis induced no EP. Conclusions: The early component was regarded as directly resulting from ascending neural conduction of A fibers of the VN, probably originating around the jugular foramen. Recording of VN-EP might document the cause of treatment failure in some patients.

Ann.Rep.Jpn.Epi.Res.Found. 2015; 26: 105-114